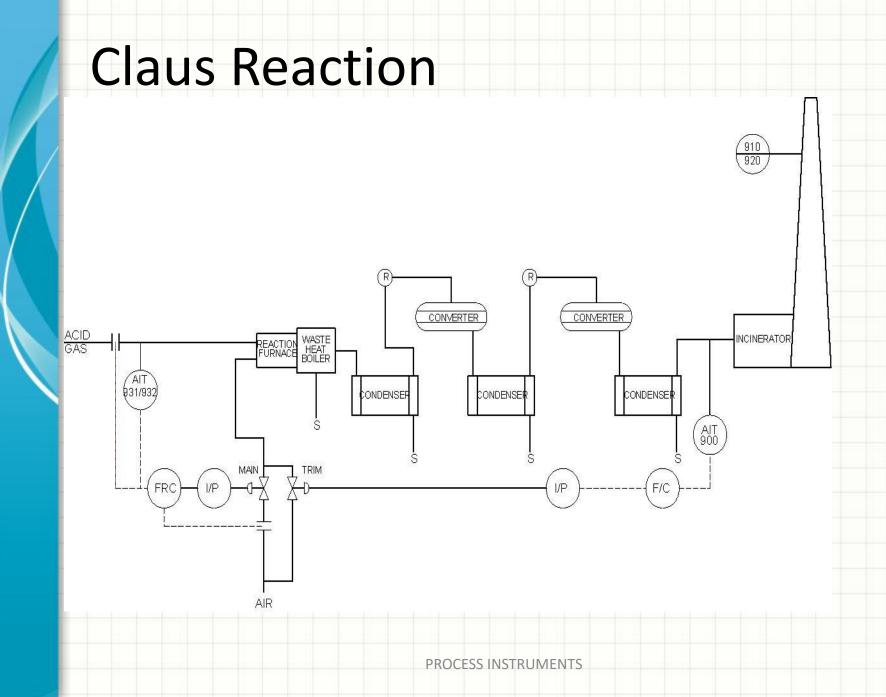
ANALYTICAL INSTRUMENTATION & MAINTENANCE SYSTEMS (AIMS)

AIMS

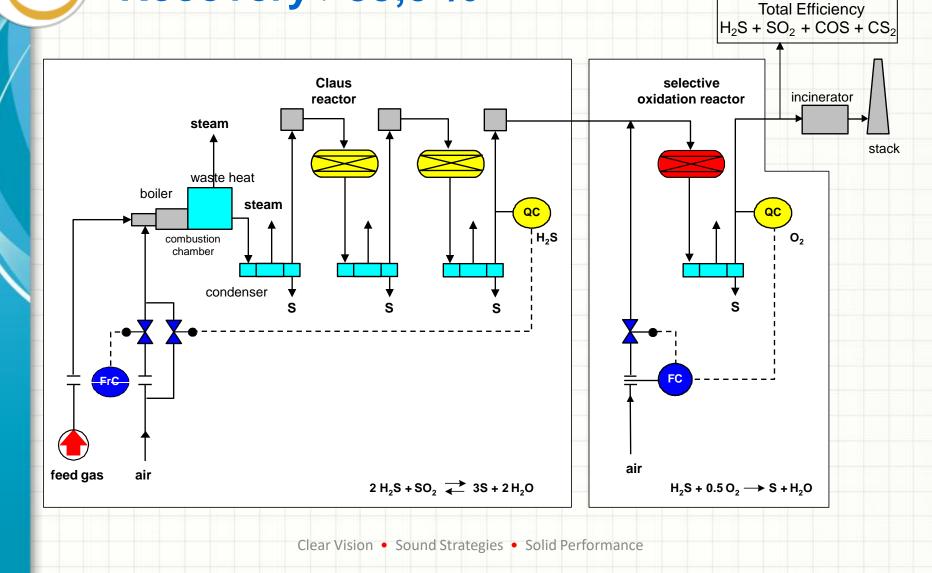
SRU Stack Gas Emissions

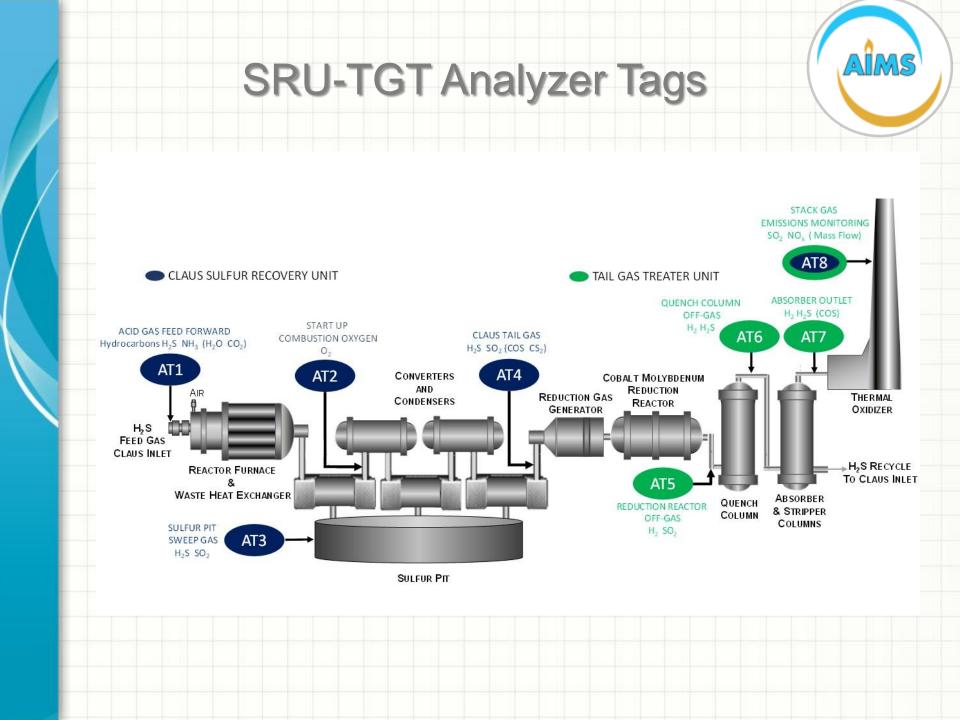
Presenter: Zaheer Juddy

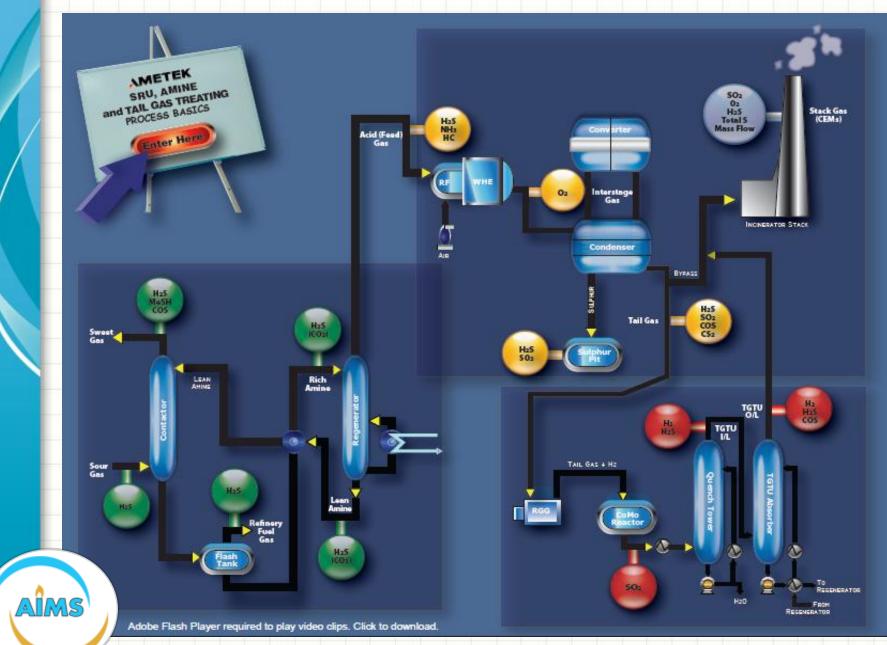
Analytical Instrumentation & Maintenance Systems(AIMS)


AÎMS

Safety is Important for all and so is Environment






Jacobs Engineering Superclaus® S – Recovery >99,0 %

Nims

Analytical Instrumentation & Maintenance Systems (AIMS)

PROBE MAINTENANCE MISTAKES


Where iam when sampling

PROBE MAINTENANCE MISTAKES

What can happen

Acid Mists, Salts and Corrosion

SRU Stack Gas: Continuous Emission Monitor

- A SRU is a "Chemical Pant" (more than it is a "Combustion Source") Like a chemical plant it does not operate at the same efficiency at varying loads
- A SRU must measure MASS Emission (SO₂ x stack gas flow rate)
- > MASS Emission SO_2 is used for material balance / optimization purposes
- Combine with H₂S acid gas analyzer to calculate recovery efficiency
- Requires "<u>hot-wet</u>" measurement
- Velocity measured with pitot tube, sighted 5-8 dia above incinerator
- Design sample system for possible SO₃ formation

Other Parameters

SO2

Dual range (TGTU bypass)

H₂S CHECK REQUIRE D OR NOT

Measurement of residual value after incineration (~10 ppm)
 "Account" for the H₂S by oxidizing the residual H₂S to SO₂

Stand alone analyzer or on board with SO₂ analyzer

NOx

 O_2

NOx values are low, not normally required
Can be measured with same analyzer along with SO₂

Emission Analyzers

- Accounting for un-combusted reduced sulfur compounds
 - The part of EPA sub-part J(a) that was not promulgated
- Dual Range of SO₂ if TGTU can be bypassed
- "The Color of Plumes"
 - White: Steam plume caused by water condensation (cold, Canada)
 - Bluish white: SO₃ plume usually caused by high SO₂ emissions
 - (....Confirmed by "Green Slime" in the CEMS sample system)
 - Orange: NO_x plume
 - Brown: Unburned hydrocarbon / soot plume
 - Green: Burning H₂S plume

<u>AMETEK Process Instruments</u> <u>WR Series Hot/Wet Analyzers</u>

- Hot/Wet Extractive UV Photometric Analyzers
 - Single component analyzer systems
 Models 909 and 919
 - Common components measured: SO₂, NO, NO₂ ,H₂S, COS, CL₂, NH₃
 - Multi-component analyzer systems
 Models 910 and 920
 - Simultaneous determination of SO₂, NO, NO₂ (as NOx)
 - No interferences from other flue gas components (water, CO2)
 - Used in CEM and process control monitoring applications

<u>AMETEK Series Hot/Wet CEM Analyzers – Why</u>

Extractive Systems?

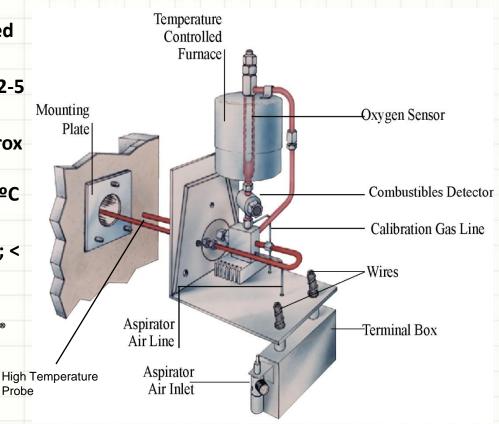
Extractive Sample System Design

- accurate temperature control of sample
 - ensures sample is kept above the highest dew point
- Sample (pre-) conditioning
 - critical for high particulate/high acid dew point applications
- Easy to calibrate (using certified EPA approved cal gases)
- Easy to maintain
- Easy access (in shelter)
 - 'safer' (and more comfortable) working environment
- extractive CEMs live longer!
- Easy integration of additional equipment
 - Additional analyzers or instruments
 - Data acquisition systems (DAS)
 - Other hardware (control) requirements

Photomultipliers, Filter Wheel & Chopper Motor

AMETEK Stack Analyzers Common Features and Benefits

- UV Measurement
- High Resolution
 - Hollow cathode lamps
 define resolution typically
 0.02 nm
- Superior Geometry
 - Dual beam design
 - "Neutral Drift" reference
- Serial communications
 - Modbus protocol

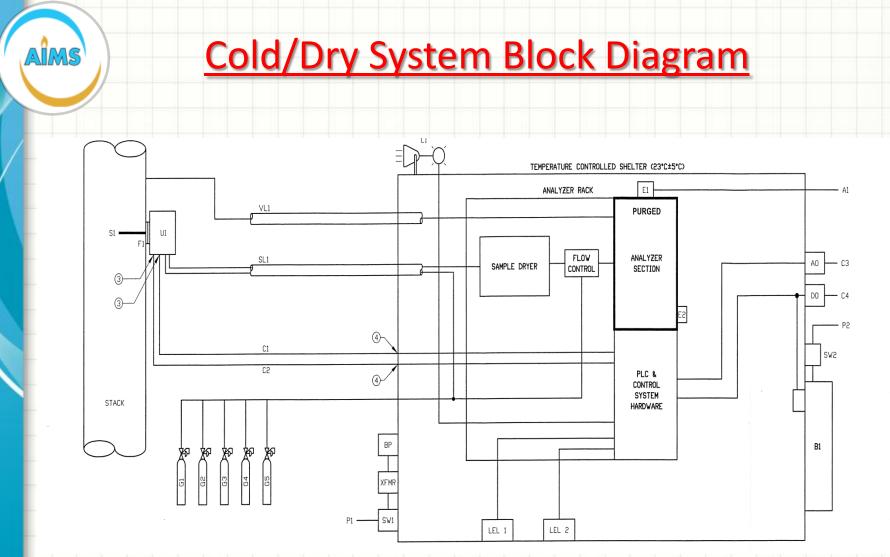

- \rightarrow No Interference from H₂O and CO₂
- ➔ Linearity better than 1% over 4 to 5 orders of magnitude
- ➔ Superior wavelength stability
- ➔ Excellent baseline stability
- ➔ Minimal span drift

- ➔ Direct interface with DCS
- ➔ Remote diagnostics

WDG-IVC – Theory of Operation

Close-coupled extractive

- Close-coupled extractive is direct mounted to flange (hot-wet sampling)
- Uses an aspirator for true fast response (2-5 LPM primary loop flow)
- Cells located in the convection loop (approx 250 cc/min flow controlled by delta temperature between cell furnace at 695°C and enclosure at 230°C)
- 90% Response time < 6 secs O2 WDG-IV; <
 12 secs O2, < 20 secs Combustibles/CH4
 WDG-IVCM GP
- Designed for high temp process (Hexoloy[®] Probes – 1650^oC)
- Easy to service on flange



<u>Continuous Emissions Monitoring Systems Key</u> <u>Components (Cold/Dry)</u>

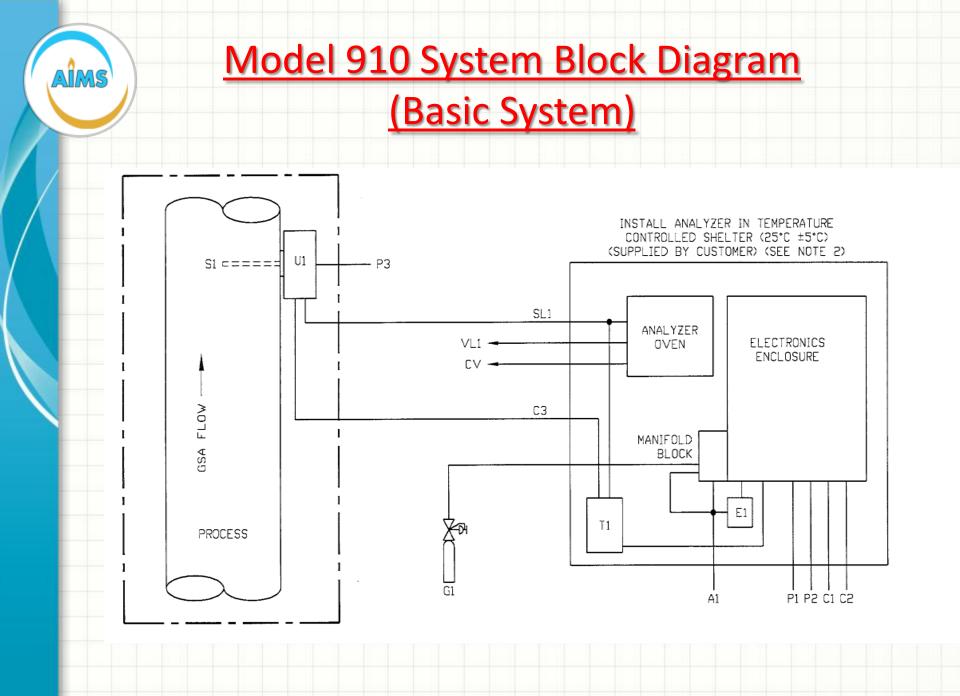
Every CEM consists of:

- Analytical equipment (analyzers) 19" rack mounted
 - One or more analyzers
- Sample system
 - Sample probe (typically includes stack pre-conditioning)
 - Sample lines and controllers (panel mounted)
 - Sample conditioning (panel or rack mounted)
 - cold/dry systems require cooler/extraction, pump
- Sample flow and control (rack or panel mounted)
 - Hardware (plumbing, flow distribution, solenoids etc)
 - customer termination and signal control panel
 - Typically consists of PLC for sample system flow control, auto or manual calibrations, temperature zone control for SCU & sample line digital alarm signaling, analog outputs (raw or compensated for drift), track and hold function
- Data acquisition system (DAS)
- Enclosure/Shelter

Aims

Model 920 SO2/NO/NO2/O2 Analyzer Sample System Features

Fully integrated system


- Temperature control
 - model 9xx series allow for independent PID temperature control, including probe, heated sample lines and analyzer oven
 - Flexible probe designs based on severity of service (application), includes probe tip calibration
- Flow control
 - Aspirated sample system (no pump)
 - Field unit gas manifold for cal (span), zero and sample gas provided
 - Basic timing sequence for cal incorporated in series 9xx analyzers

M920/910 (919 and 909) CEM - Benefits

• Multi-range SO2

aims

- Auto-ranging from 250 ppm FS to 2.0% FS (for 910 and 920)
- No operator intervention required
- No need for multiple analyzers
- Operational
 - No additional calibration gas handling system built in
 - No additional probe and sample line temp control needed - built-in
 - Serial communications (Modbus protocol) allows direct interfacing with DACS
 - Remote diagnostics

Additional Equipment for CEMs Data Acquisition

- Data Acquisition and Control
 - Typically required to meet environmental reporting and data logging requirements
 - AMETEK uses packaged DAS systems from established vendors; NEXUS, ACS, VIM, Vivicom, Honeywell, ESC etc
 - DAS is configured to meet the client's reporting requirements as per the operating permit.
 - Emission limit alarms
 - System non-operational alarms
 - Out of control calibration alarms
 - Daily, weekly, monthly reports
 - Real time data screens

AIMS

<u>AMETEK Stack Analyzers</u> Installed Base – Key Applications

SRU Emissions Monitoring

- Models 909/910 Continuous Mass Emissions Monitor (CMEM)
 - Built-in S-type pitot tube, DP cell for stack velocity, thermocouple for mass emission calculation
 - 150+ units installed globally

General Emissions Monitoring

- Models 919 single component, no-moving parts CEM
 - Most commonly measured component: SO₂
 - 100+ units installed globally since introduced in 2002, approx 75% as CEM analyzers (balance process monitoring applications)
- Model 920 multi-component CEM
 - Common component combinations: multi-range SO₂, SO₂, NO/NO₂/NOX, H₂S
 - 300+ units installed globally

AIMS

<u>AMETEK Western Research</u> <u>HOT/WET System Integration</u>

- Adding Additional Analyzer Technologies
 - Flow (pitot tubes, optical, ultrasonic)
 - Opacity
 - CO/CO2 (IR)
 - Oxygen (various technologies, e.g. zirc oxide, TDLAS etc)
- Adding Data Acquisition Systems and PLC Control
 - Various experienced suppliers (Honeywell, Vims, WTC, Vivicom etc)
 - PLC (Allen Bradley, Schneider, Siemens etc), when applicable
- Adding Utilities
 - Compressors, HVAC, gas detection, cal manifolds, user interfaces etc

Aims

<u>AMETEK Western Research</u> <u>Model 910 SO2/NO/NO2 Analyzer</u>

Manufactured:

- Usually in a carbon steel, fiberglass cabinet or walk in shelter
- Various probe configurations
- Heated Sample Line
- Certifications:
 - General Purpose; NEC/CEC Class I, Div 2, Group C/D and ATEX II 2G (EEx p d)
- Target Industries:
 - Sulfur Recovery Units
 - Sulfuric Acid Plants
 - Power Generation Plants
 - Cement Kilns
 - Smelters
 - Pulp and Paper Manufacturing
 - Fluid Catalytic Cracker Stacks

